Software

CPLAP

Written by Dr John Buckeridge, CPLAP which stands for the Chemical Potential Limits Analysis Program (click here to get the source code), is a program designed to determine the thermodynamical stability of a material, and, if it is stable, to determine the ranges of the constituent elements’ chemical potentials within which it is stable, in comparison with competing phases and the elemental forms. CPLAP is extremely useful for Materials Design, as you can use it for testing the stability of new materials versus competing phases. It can also be used to set the boundaries of chemical potentials for defect Chemistry/Physics analysis (see figure below). For a full explanation, read the paper here.

Example

If you do use CPLAP, please cite the following paper in your publication:
J. Buckeridge, D. O. Scanlon. A. Walsh and C. R. A. Catlow, Automated procedure to determine the thermodynamic stability of a material and the range of chemical potentials necessary for its formation relative to competing phases and compounds, Computer Physics Communications, 185(1), 330-338 (2014)

Publications using CPLAP

    1. A. Walsh and A. Zunger, Instilling Defect Tolerance in New Compounds, Nature Materials, Accepted (2017) doi:10.1038/nmat4973
    1. A. L. Galvin and G. W. Watson, Modelling Oxygen Defects in Orthorhombic LaMnO3 and its Low Index Surfaces, Physical Chemistry Chemical Physics, Accepted (2017) doi:10.1039/C7CP02905E
    1. Y. G. Yu, X, Zhang and A. Zunger, Natural Off-Stoichiometry Causes Carrier Doping in Half-Heusler Filled Tetrahedral Structures, Physical Review B, 95, 085201 (2017) doi:10.1103/PhysRevB.95.085201
    1. C. N. Savory, A. M. Ganose and D. O. Scanlon, Exploring the PbS-Bi2S3 Series For Next Generation Energy Conversion Materials, Chemistry of Materials, 29, 5156 (2017) doi: 10.1021/acs.chemmater.7b00628
    1. E. Olsson, X. Aparicio-Angles and N. H. de Leeuw, A Computational Study of the Electronic Properties, Ionic Conduction, and Thermal Expansion of Sm1−xAxCoO3 and Sm1−xAxCoO3−(x/2) (A = Ba2+, Ca2+, Sr2+, and x = 0.25, 0.5) as Intermediate Temperature SOFC Cathodes, Physical Chemistry Chemical Physics, 19, 13960 (2017) doi: 10.1039/C7CP01555K
    1. Z. Xie, Y. Sui, J. Buckeridge, C. R. A. Catlow, T. W. Keal, P. Sherwood, A. Walsh, D. O. Scanlon, S. M. Woodley, and A. A. Sokol, Demonstration of the donor characteristics of Si and O defects in GaN using hybrid QM/MM, Physica Status Solidi A, 214, 1600440 (2017) doi: 10.1002/pssa.201600445
    1. J. Kaczkowski and A. Jezierski, Effect of Chemical and Hydrostatic Pressure on Electronic Structure of BiPd2O4: A First-Principles Study, Journal of Alloys and Compounds, 726, 737 (2017) doi: 10.1016/j.jallcom.2017.08.030
    1. S. H. Shah and P. D. Bristowe, Point Defect Formation in M2AlC (M = Zr,Cr) MAX Phases and Their Tendency to Disorder and Amorphize, Scientific Reports, 7, 9667 (2017) doi: 10.1038/s41598-017-10273-6
    1. C. N. Savory, A. Walsh and D. O. Scanlon, Can Pb-free Halide Double Perovskites Support High-efficiency Solar Cells?, ACS Energy Letters , 1, 949 (2016) doi: 10.1021/acsenergylett.6b00471
    1. W. M. Linhart, M. K. Rajpalke, J. Buckeridge, P. A. E. Murgatroyd, J. J. Bomphrey, J. Alaria, C. R. A. Catlow, D. O. Scanlon, M. J. Ashwin and T. D. Veal, Band Gap Reduction in InSbxN1-x Alloys: Optical Absorption, k.P Modeling and Density Functional Theory , Applied Physics Letters, 109, 132104 (2016) doi: 10.1063/1.4963836
    1. M. R. Farow, C. R. A. Catlow, A. A Sokol and S. M. Woodley, Double Bubble Secondary Building Units Used as a Structural Motif for Enhanced Electron–hole Separation in Solids, Materials Science in Semiconductor Processing, 42, 147 (2016) doi: 10.1016/j.mssp.2015.08.023
    1. E. Olsson, X. Aparicio-Angles and N. H. de Leeuw, Ab Initio Study of Vacancy Formation in Cubic LaMnO3 and SmCoO3 as Cathode Materials in Solid Oxide Fuel Cells, The Journal of Chemical Physics, 145, 014703 (2017) doi: 10.1063/1.4954939
    1. F. H. Taylor, J. Buckeridge and C. R. A. Catlow, Defects and Oxide Ion Migration in the Solid Oxide Fuel Cell Cathode Material LaFeO3, Chemistry of Materials, 28, 8210 (2016) doi: 10.1021/acs.chemmater.6b03048
    1. J. Buckeridge, F. H. Taylor and C. R. A. Catlow, Efficient and Accurate Approach to Modeling the Microstructure and Defect Properties of LaCoO3, Physical Review B, 93, 155123 (2016) doi: 10.1103/PhysRevB.93.155123
    1. J. Buckerdige, D. Jevdokimovs, C. R. A. Catlow and A. A. Sokol, Nonstoichiometry and Weyl Fermionic Behavior in TaAs, Physical Review B, 94, 190101 (2016) doi: 10.1103/PhysRevB.94.180101
    1. J. Buckeridge, K. T. Butler, C. R. A. Catlow, A. J. Logsdail, D. O. Scanlon, S. A. Shevlin, A. A. Sokol, S. M. Woodley, and A. Walsh, Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials are Determined by Local Coordination, Chemistry of Materials, 27, 3844 (2015) doi: 10.1021/acs.chemmater.5b00230
    1. Z.-H. Cai, P. Narang, H. A. Atwater, S. Chen, C.-G. Duan, Z.-Q. Zhu and J.-H. Chu, Cation-Mutation Design of Quaternary Nitride Semiconductors Lattice-Matched to GaN, Chemistry of Materials, 7757, (2015) doi: 10.1021/acs.chemmater.5b03536
    1. R. D. Bayliss, S. N. Cook, D. O. Scanlon, S. Fearn, J. Cabana, C. Greaves, J. A. Kilner and S. J. Skinner, Understanding the Defect Chemistry of Alkali Metal Strontium Silicate Solid Solutions: Insights from Experiment and Theory, Journal of Materials Chemistry A, 2, 17919 (2014) doi: 10.1039/c4ta04299a
    1. D. O. Scanlon, J. Buckeridge, C. R. A. Catlow, G. W. Watson, Understanding doping anomalies in degenerate p-type semiconductor LaCuOSe, Journal of Materials Chemistry C, 2, 3429 (2014) doi: 10.1039/c4tc00096j
    1. C. Wang, S. Chen, J.-H. Yang, L. Liang, H.-J. Xiang, X.-G. Gong, A. Walsh and S.-H. Wei, Design of I2–II–IV–VI4 Semiconductors through Element Substitution: The Thermodynamic Stability Limit and Chemical Trend, Chemistry of Materials, 26, 3411 (2014) doi: 10.1021/cm500598x